

Membrane Reactors for Hydrogen production

Clean Hydrogen Partnership

"Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or Clean Hydrogen Joint Undertaking. Neither the European Union nor the granting authority can be held responsible for them."

Outlook

- Who we are
- Why integrated reactors
- Hydrogen
- Ammonia
- Next steps

Our Lab(s)

Research themes - SIR

Novel intensified reactor concepts via:

- Integration <u>reaction</u> and <u>separation</u> (membrane reactors, chemical looping)
- Integration <u>reaction</u> and <u>heat/energy management</u> (endo/exothermic, plasma systems)

4 • **Research approach:** combination experimental PoC and modelling

Research themes - SIR

Integration reaction + separation

Packed bed and fluidized bed membrane reactors

- (H₂, syngas, oxidative dehydrogenations, partial oxidations)
- Use membranes to improve fluidization and fluidization to improve membrane flux
- Liquid supported membranes

One of our challenges

Homo sapiens = 300000 y

record/

https://kaiserscience.wordpress.com/2019/06/24/the-discovery-of-global-warming/

Earth = 4,54 By

TU/e

Industrial revolution = 100 y

Solutions

1) Reduce the number of people;

2) Reduce the fossil energy use (by use of renewables and improved efficiency)

3) Capture the CO_2 (at the production point but also from the atmosphere)

Who is responsible

IPCC report

8 Membrane Reactors for Hydrogen production

A possible solution

*A quad is a unit of energy equal to 1015 British Thermal Units

(1 BTU is about 0.0003 kilowatt-hours).

onature

A membrane reactor

Brunetti A.; Caravella C.; Barbieri G.; Drioli E.; "<u>Simulation study of</u> <u>water gas shift in a membrane reactor</u>", *J. Membr. Sci.*, 2007, 306(1-2), 329-340

Why a membrane reactor?

Examples: Hydrogen

Hydrogen production

Interesting technologies to improve reforming with CO₂ capture

Integrate Membranes and CLC

VIDI - 12365

2012 – TRL1

2017 – TRL4/5

Integrate Membranes and CLC

Integrate Membranes and CLC

Pd-Ag metallic supported

MODELTA

MODELLING SOLUTIONS FOR MEMBRANE TECHNOLOGY

an official spin-off

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

Is MA-CLR really interesting?

	Conventional NO CO₂ capture	Conventional WITH CO ₂ capture	MA-CLR concept
Efficiency (%)	81	67	82
CO ₂ avoided (%)	-	74	91
Cost of H ₂ (€/m ³)	0.216	0.282	0.213

Examples: Ammonia

ΓU/e

H₂ production from NH₃ decomposition

 $\mathbf{NH}_{3} \leftrightarrow \mathbf{0.5 N}_{2} + \mathbf{1.5 H}_{2}$ $\Delta \mathbf{H}_{f}^{o} = 45.9 \text{ kJ/mol}$

NH₃ decomposition is favored at low pressure and high temperature

H₂ production from NH₃ in a membrane reactor

Double-skinned Pd-Ag

~4.61

Compared	to	conventional	systems,	in a	memt	orane	reactor:
—							

- ➡ Higher NH₃ conversion can be achieved at lower temperature (higher efficiencies)
 - \Box High-purity H₂ is recovered
 - □ the footprint of the technology is reduced

Thickness selective layer [µm]

Membrane

H₂ production from NH₃ in a membrane reactor

Reaction pressure [bar]	NH ₃ conversion [%]	H ₂ recovery [%]	H ₂ purity [%]
2	98.8	49.8	99.993
3	99.5	78.6	99.989
4	99.6	86.6	99.985
5	99.7	90.5	99.980
6	99.7	92.4	99.980

Experimental conditions				
T [°C]	450			
Permeate pressure [bar]	0.01-1			
Feed flow rate [L _N /min]	0.5			
Membrane	Double-skinned Pd-Ag			
Thickness selective layer [µm]	~4.61			

V. Cechetto, L. Di Felice, J. A. Medrano, C. Makhloufi, J. Zuniga, and F. Gallucci, "H₂ production via ammonia decomposition in a catalytic membrane reactor," Fuel Process. Technol., vol. 216, p. 106772, 2021, doi: https://doi.org/10.1016/j.fuproc.2021.106772.

Hydrogen purification from ammonia

Reaction temperature = 500 C, reaction pressure = 4 bar(a), ammonia feed flow rate = $0.5 L_N/min$.

Strategy 2: Addition of a H₂ purification stage downstream the membrane reactor

Running EU projects related to membranes and MRs

ГU/е

Membrane reactors for Chemical production - Fausto Gallucci

EINDHOVEN UNIVERSITY OF TECHNOLOGY

> Inorganic Membranes & Membrane Reactors

Fausto Gallucci F.Gallucci@tue.nl

"Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or Clean Hydrogen Joint Undertaking. Neither the European Union nor the granting authority can be held responsible for them."