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Research themes - SIR

Novel intensified reactor concepts via:
» Integration reaction and separation
(membrane reactors, chemical looping)

» Integration reaction and heat/energy management
(endo/exothermic, plasma systems)

Nitrogen
a
Air recator o

Qxygen carrier
Omxygen
Nickel

by Jens Wolf, KTH
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Research themes - SIR
Integration reaction + separation

Packed bed and fluidized bed membrane reactors
(H,, syngas, oxidative dehydrogenations, partial oxidations)
= Use membranes to improve fluidization and fluidization to improve membrane flux
= Liquid supported membranes




One of our challenges
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https://kaiserscience.wordpress.com/2019/06/24/the-discovery-of-global-
warming/

June, July, and August Global Temperature Anomaly (°C compared to 1951-1980 average)
E— . |
<-4 -2 0 2 =4
https://climate.nasa.gov/news/3282/nasa-announces-summer-2023-hottest-on-
record/

Earth = 4,54 By Homo sapiens = 300000 y Industrial revolution =100y
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Solutions

1) Reduce the number of people;

2) Reduce the fossil energy use (by use of renewables and
iImproved efficiency)

3) Capture the CO, (at the production point but also from the
atmosphere)
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Who is responsible

Electricity

and Heat Production Energy
25% 1.4%
AFOLU ’
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o Industry
Buildings 1%
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— Transport
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Industry
21% Buildings
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Other
Energy J
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A possible solution

Commercial
19%

Transportation
28%

TOTAL
US ENERGY
CONSUMPTION

Industrial
32%

Residential
21%

*Aquad is a unit of energy equal to 10!5 British Thermal Units
(1BTU is about 0.0003 kilowatt-hours). enature
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A membrane reactor

Traditional Reactor

Hydrogen permeation

Brunetti A.; Caravella C.; Barbieri G.; Drioli E.; “Simulation study of
water gas shift in a membrane reactor”, J. Membr. Sci., 2007, 306(1-

2), 329-340
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Why a membrane reactor?
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Examples: Hydrogen
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Hydrogen production

Make-up water

g Gas stack

Steam 1
Cycle

H,O to process ”
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Reformed Syngas
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Hydrogen production - chemistry

Membrane reactors

CH, + 2H,0 ¢ CO, +4H, AH =165 kl/mol

/

Sorption enhanced
reactors
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Interesting technologies to improve reforming with CO,
capture

MeQO
CLC:CO,+H,0
N,
CLR:CO+H,
Air Fuel
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Integrate Membranes and CLC

16

Depleted Air

HotMeO

Air reactor
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MeO/N, separation
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CO,+ H,0

H, perm-selective membranes

Netherlands Organisation
for Scientific Research

VIDI - 12365

2012 - TRL1

2017 — TRL4/5
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Integrate Membranes and CLC

PR A

~ Ceramic barrier layer
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Oscillations in temperature indicate

Integrate Membranes and CLC solids movement
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<% MODELTA

MODELLING SOLUTIONS FOR MEMBRANE TECHNOLOGY

an official spin-off

TU/e #sne  ® macsets Copinoff:

Membranes And Catalysts Beyond
TECHNOLOGY Economic and Technological Hurdles
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Is MA-CLR really interesting?

Conventional Conventional MA-CLR
NO CO, capture WITH CO, capture concept
Efficiency (%) 81 67 82
CO, avoided (%) - 74 o1
Cost of H, (¢/m?3) 0.216 0.282 0.213
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Examples: Ammonia
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Ammonia as an energy carrier

RENEWABLE GREEN AMMONIA GREEN AMMONIA GREEN AMMONIA
ENERGY SYNTHESIS STORAGE TRANSPORTATION
GENERATION

1
|m|M|u

NH,

.
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N
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Advanced materials and Reactors
for Energy storage tHrough

Ammonia

GREEN AMMONIA UTILIZATION

- Direct utilization (ICE for mobility
or NH; solid oxide fuel cells)

- NH; decomposition for H,

production

Hy+ N,
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H, production from NH; decomposition

NH3(—) 0.5 NZ + 1.5 HZ
» NH; decomposition is favored at

AHP= 45.9 k]/mol low pressure and high temperature

Conventional system Novel technology
H,+ N, Permeate: H,

Reaction unit
working at high

Retentate: N,

50
temperature and [y .
| H,/N, separation H,
oW pressure MEMBRANE REACTOR
system NH, decomposition reaction into
H, and N, and high-purity H,
separation are simultaneously
Off-gases performed
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H, production from NH; in a membrane reactor

Permeate: H;,

100 [ SUURIRIUIN_seeserrrer. ETTIITEIIT 100
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Experimental conditions Compared to conventional systems, in a membrane reactor:

A7 bar] ’ O Higher NH; conversion can be achieved at lower
L 00 temperature (higher efficiencies)

ezt 2 [t 0° 4 O High-purity H, is recovered

Membrane Pouble-skinned Pe-Ag Q the footprint of the technology is reduced
Thickness selective layer [um] ~4.61

V. Cechetto, L. Di Felice, J. A. Medrano, C. Makhloufi, J. Zuniga, and F. Gallucci, “H, production via ammonia decomposition in a catalytic

26 Membra membrane reactor,” Fuel Process. Technol., vol. 216, p. 106772, 2021, doi: https://doi.org/10.1016/j.fuproc.2021.106772. I U/e



H, production from NH; in a membrane reactor

Permeate: H;,
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V. Cechetto, L. Di Felice, J. A. Medrano, C. Makhloufi, J. Zuniga, and F. Gallucci, “H, production via ammonia decomposition in a catalytic
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Hydrogen purification from ammonia

Membrane code

Arenha-2

Strategy 1: Increase of the membra ~Hiven [ovine dhiclinans
(<< PEMFC specifications requires
Thickness selective H2 ﬂnﬂ residual NH, concentration in NH; concentration in the permeate
layer [um] =* the H, feed < 0.1 ppm. [ppm]
~1 210 633 47 (£2.1)
~6—8 68960 84.8 <0.75

Arenha-3

Reaction temperature = 500 C, reaction pressure = 4 bar(a), ammonia feed flow rate = 0.5 L/min.

Strategy 2: Addition of a H, purification stage downstream the membrane reactor

Purge N,

Cold flue gases

NH;

Experimental conditions

Retentate pressure [bar] 3
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|
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: d
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|
|

€
Heat for %
reg:nlration ;’ 50 .
******* 5 40 NH; feed flow rate [Ly/min] 0.5
,,,,,,,, - £ 30 Sorbent Zeolite 13X
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NH, concentration in the
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20
10 With sorbent
>< 0
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V. Cechetto, L. Di Felice, R. Gutierrez Martinez, A. Arratibel Plazaola, and F. Gallucci, “Ultra-pure hydrogen production via ammonia decomposition I U/e
in a catalytic membrane reactor,” Int. J. Hydrogen Energy, 2022, https://doi.org/10.1016/].ijhydene.2022.04.240.
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